Symmetric Positive 4th Order Tensors & Their Estimation from Diffusion Weighted MRI
نویسندگان
چکیده
In Diffusion Weighted Magnetic Resonance Image (DW-MRI) processing a 2nd order tensor has been commonly used to approximate the diffusivity function at each lattice point of the DW-MRI data. It is now well known that this 2nd-order approximation fails to approximate complex local tissue structures, such as fibers crossings. In this paper we employ a 4th order symmetric positive semi-definite (PSD) tensor approximation to represent the diffusivity function and present a novel technique to estimate these tensors from the DW-MRI data guaranteeing the PSD property. There have been several published articles in literature on higher order tensor approximations of the diffusivity function but none of them guarantee the positive semi-definite constraint, which is a fundamental constraint since negative values of the diffusivity coefficients are not meaningful. In our methods, we parameterize the 4th order tensors as a sum of squares of quadratic forms by using the so called Gram matrix method from linear algebra and its relation to the Hilbert's theorem on ternary quartics. This parametric representation is then used in a nonlinear-least squares formulation to estimate the PSD tensors of order 4 from the data. We define a metric for the higher-order tensors and employ it for regularization across the lattice. Finally, performance of this model is depicted on synthetic data as well as real DW-MRI from an isolated rat hippocampus.
منابع مشابه
Regularized positive-definite fourth order tensor field estimation from DW-MRI
In Diffusion Weighted Magnetic Resonance Image (DW-MRI) processing, a 2nd order tensor has been commonly used to approximate the diffusivity function at each lattice point of the DW-MRI data. From this tensor approximation, one can compute useful scalar quantities (e.g. anisotropy, mean diffusivity) which have been clinically used for monitoring encephalopathy, sclerosis, ischemia and other bra...
متن کاملRiemannian Framework for Estimating Symmetric Positive Definite 4th Order Diffusion Tensors
DTI is an important tool to investigate the brain in vivo and non-invasively in spite of its shortcomings in regions of fiber-crossings. HARDI models such as QBI and Higher Order Tensors (HOT) were invented to overcome this shortcoming. HOTs, however, have not been explored extensively even though sophisticated estimation schemes were developed for DTI that guarantee positive diffusivity, such ...
متن کامل4th Order Symmetric Tensors and Positive ADC Modelling
High Order Cartesian Tensors (HOTs) were introduced in Generalized DTI (GDTI) to overcome the limitations of DTI. HOTs can model the apparent diffusion coefficient (ADC) with greater accuracy than DTI in regions with fiber heterogeneity. Although GDTI HOTs were designed to model positive diffusion, the straightforward least square (LS) estimation of HOTs doesn’t guarantee positivity. In this ch...
متن کاملSymmetric Positive 4 Order Tensors & their Estimation from Diffusion Weighted MRI
In DiffusionWeighted Magnetic Resonance Image (DW-MRI) processing a 2 order tensor has been commonly used to approximate the diffusivity function at each lattice point of the DW-MRI data. It is now well known that this 2-order approximation fails to approximate complex local tissue structures, such as fibers crossings. In this paper we employ a 4 order symmetric positive semi-definite (PSD) ten...
متن کاملSimultaneous Smoothing & Estimation of DTI via Robust Variational Non-local Means
Regularized diffusion tensor estimation is an essential step in DTI analysis. There are many methods proposed in literature for this task but most of them are neither statistically robust nor feature preserving denoising techniques that can simultaneously estimate symmetric positive definite (SPD) diffusion tensors from diffusion MRI. One of the most popular techniques in recent times for featu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 20 شماره
صفحات -
تاریخ انتشار 2007